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FOREWORD

Stability properties of the negative-mass instability in a rotating

annular electron beam (E-layer) is investigated, in connection with applica-

tions on the cusptron microwave tubes. Analysis is carried out for an

infinitely long E-layer propagating through a magnetron-type conducting

wall and propagating parallel to an applied axial magnetic field. We

assume that the E-layer is thin and very tenous, A closed algebraic

dispersion relation of the negative-mass instability is obtained, including

the important influence of conducting boundaries on the mode control in

microwave generation and amplification. It is shown that for typical

present experimental beam parameters, gain and efficiency of the cusptron

can be more than five times those of the gyrotron. Moreover, with an

appropriate geometric configuration, perturbations with azimuthal mode

number N can be dominantly unstable, thereby optimizing the microwave

power output for radiation with high frequency w Nwc, where w is the

electron cyclotron frequency and N is the resonator number in the conducting

wall.
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I. INTRODUCTION

[' b

In recent years, there have been numerous experimental and theoretical

investigations on high power and high frequency microwave devices such as

gyrotrons I- 3 relativistic magnetrons4 and free electron lasers.5 ,6 High

power microwaves have been also produced by the negative-mass instability
7 9

of a relativistic rotating electron layer (E-layer) in a conducting

waveguide. This relatively new scheme of microwave generation by a

rotating E-layer has many attractive features in practical application.

Using the mode control scheme currently under investigation,I0 for example,

this device could be a tunable, high-frequency microwave tube with low

magnetic fields. One of the simple ways to produce a rotating E-layer is

use of a magnetic cusp field through which an annular electron beam be-
11

comes the same radius rotating beam. After passing through a cusped

magnetic field, a nonrelativistic E-layer is propagating through a

convential magnetron-type conducting wall called the cusptron. The name

"'cusptron" is originated from the cusp and the magnetron. In this paper,

we investigate the negative-mass stability properties of the E-layer in

a magnetron-type conductor, in connection with the application on the

cusptron microwave tube.

The stability analysis of the negative-mass instability is carried

out for anE-layer with radius R0 propagating through a mangetron-type

conductor with its inner-and outer-most radii R and Rc, respectively.

Equilibrium and stability properties are calculated for the

electron distribution function (Eq. (1)] in which all electrons have the

same energy and the same canonical angular momentum but a Lorentzian

' "" ' / " " . . , . o . i , . : iI



* . .. . . . . _ , . ., . .. .-, . _ .'*'-. ___ . _._.. . . . .. .. .

NSWC.TR 82-530

distribution in the axial canonical momentum. The stability analysis is

calculated within the framework of the linearized Vlasov-Maxwell equations

for an infinitely long E-layer propagating parallel to an applied magnetic

field Boe with an axial velocity 0 ce. We assume that the E-layer is thin

and very tenuous. The formal dispersion relation [Eq. (29)] of the negative-

mass instability is obtained in Section II, including the important

.. influence of conducting boundaries on the mode control in microwave

amplification and generation.

In Section III, properties of the vacuum dispersion relation in a

magnetron-type conductor are investigated without including the influence

of beam electrons. It is shown that the vacuum dispersion relation reduces

to three distructive modes; the transverse electric (TE), the transverse

magnetic (TM), and the magnetron TE modes. From numerical calculation, the

cut-off frequency wct Mc/Ra is obtained in terms of the ratio Rc /Ra* In

Section IV, the negative-mass stability properties of an E-layer is numerically

investigated. Several points are noteworthy from the numerical calculation for

a nonrelativistic cusptron. First, optimum coupling occurs between the beam

and the fundamental 2Tr modes. It is shown for the fundamental 2Tr mode that for

typical present experimental beam parameters, gain and efficiency of the cusptron

can be more than five times those of the gyrotron. Second, for the

applied magnetic field satisfying the grazing condition of the I = N

perturbations, other azimuthal perturbations with Z 0 N are suppressed.

Here t is the azimuthal harmonic number of perturbations and N is the

number of resonator in the magnetron-type conductor. Under this grazing

condition, the I - N mode perturbation is the dominant unstable mode,

optimizing the microwave power output for radiation with frequency

W = c . Therefore, even for relatively low magnetic field, high frequency

2
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microwave can be amplified by making use of the cusptron with N 2.

Finally, the growth rate and Doppler-shifted real oscillation frequency

are substantially increased by changing the applied field index from

zero to a small positive value. Preliminary investigation of a rela-

tivistic cusptron amplifier is also carried out in Section IV.

I.

i-3
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II. VLASOV-MAXWELL THEORY

As illustrated in Fig. 1, the equilibrium configuration consists

of a nonneutral electron layer (E-layer) that is infinite in axial extent

and aligned parallel to an applied magnetic field B0 (r)iZ. The electron

layer is accomplished by passing of a hollow electron beam through an

ideal cusp magnetic field. Therefore, the electron layer is in a fast

rotational equilibrium, where all electrons have positive canonical

angular momentum. The mean radius of the E-layer is denoted by R0 . We

also assume that the radial thickness of the E-layer is 24 which is much

less than the equilibrium radius R0 , i.e., a <<R0 . The mean motion

of the E-layer is in the azimuthal direction, and the applied magnetic

field provides radial confinement of the electrons. As shown in Fig. 1,

the outer conductor is a magnetron-type configuration with its inner-

and outer-most radii R and R ,respectively. The angle of the open spaces

in the magnetron-type conductor is denoted by 2a. In the theoretical

analysis, cylindrical polar coordinates (r, 8, z) are employed. In the

present analysis, we assume that v/1 << 1, where v - Nbe2/mc2 is Budker's

parameter and -?mc2 is the electron energy. Here Nb is the total number

of electrons per unit axial length, -e and m are the charge and rest

mass of electrons, respectively. Consistent with the low-density assump-

tion, we neglect the influence of equilibrium self-fields.

In the present analysis, we investigate the equilibrium and stability

properties for the choice of equilibrium distribution function

w N 4 A 6(y- 61)
Sfb (H, Pe, 8 z )  2 - 2 2

41 mc2 P z ) 2 + P )

14
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2 (m 2c4  22)
where H - ymc c + c p is he total energy, Pz is the axial

. - canonical momentum, P0 - r(p0 - (e/c)Ao(r)] is the canonical angular

momentum, wc - eB0 (Ro)/imc is the electron cyclotron frequency, A0 (r)

is the axial component of the equilibrium vector potential,

P0 - (e/c)RoA0 (R0 ) - (e/2c)Ro2B0 (R0) and 9, z and A constants.

In the subsequent stability analysis, we examine the linearized

Vlasov-Maxwell equations for perturbations about a thin E-layer

equilibrium described by Eq. (1). To calculate stability quantities

of the E-layer, we adopt a normal-mode approach in which all E-layer

perturbations are assumed to vary with time and space according to

6rP(z,t) = '(r)exp {i(Z9 + kz - wt)} ,

where Imw > 0. Here, w is the complex eigenfrequency, k is the axial

wavenumber, and Z is the azimuthal harmonic number. The Maxwell

equations for the perturbed electric and magnetic field amplitudes can

be expressed as

" x E(x) -i )(x)--V X- -- X

V x A(x) -(4ir/c)5(x) -i(w/c)t(x) (2)

where 2(x) and 9(x) are the perturbed electric and magnetic fields,

()=-ef d 3p v tb(x'?)  (3)

is the perturbed current density.

0VIx (X')1
S) - e aTexp(-i) ( + f (4)

tb(hxe fn -@. (

is the perturbed distribution function, and T t' t.

5
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From Eq. (2), it is straightforward to show that

21"~ ~ E-gzr  (r +- - t Cr) . (r) (5)
ar Zz W ie r jz j c LB

where

p 2 2 /2C k2  (6)

For present purpose, we assume that

"ll - 1W - - k$cl <<z g'

la << R0  (7)

where 6z - z/Imc and c is the speed of light in vacuo. The perturbedz

axial and azimuthal electric fields 1iJ(r) and Ez(0) are continuous

across the beam boundaries (r --R and r = R2). Here R - R - a and
2 1 0

R2 = R0 + a are the inner and outer boundaries of the E-layer, respec-

tively. Moreover, within the context of Eq. (7), it is valid to approximate

Eke (Rl) .= EL(RO) Eje(R 2 )

(8)

Elz(Rl) EzCR0 ) EXz(R 2).

Integrating Eq. (5) from r = - to r - R2 + 6 and taking the limit

6 .* 0+, we obtain

+ 4 r R2B z(R2 ) - BLz(R1-) = -- I drJ (r) (9)

1

where d0 (R + ). Similarly, the discontinuity of

the azimuthal component of the perturbed magnetic field is given by

6

. I
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B toe(R 2
+ ) 4 toe(Rl.) f dr3Iz (r), (10)

fRa

For convenience in the subsequent Analysis, ye introduce the

normalized electric and magnetic wave admittances, 12.d and b+~, defined

at the inner and outer surfaces of the E-layer by

d+- r 0 2 () d 2)

and

b+ LB,, (R 2  10jPr OB tir)Bt R

(12)

b- Ii CR1 -)/r /a r) 2 z(r)] R,

From Eq. (2), it is -traightforward to show that

:-Btz Cr) i- rEz (r) + E r)]

)b +t i-w - Ez(r) (13)

p r cp

outside the E-layer and the radial coordinate r satisfying r R
a

Substituting Eq. (13) into Eqs. (9) and (10) and making use of Eqs. (11)

and (12) we obtain

7

4
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,,R,

";!%,, ,:' " ( b .+ b ) 2 R 0i ( R ' )  k i ( 1 )1 - - i 4 ,_

. (14)

(d_+ d+)A (R)m i 4w 2dr3B (r) +i 4rp2 O ]2dri~ (r)

where use has been made of Eq. (8). Evidently, an evaluation of the

azimuthal and axial components of the perturbed current density

(Jr.t and J z) is required for a detailed stability analysis.

* A. Perturbed Current Density

" "" In this section, we evaluate the perturbed distribution function

and subsequently the perturbed current density. As indicated in Eq. (4),

the particle trajectories, r'(O), 8'(-) and z'((T), in the equilibrium

fields are required in order to evaluate the perturbed distribution

function. The applied axial magnetic field B (r)jz is approximated by

B0(r) - B0 (R0) (1 - np/R0) (15)

" where p r 0 and

n B (R) B0(r) (16)

B(0 ) . r I R

0: is the magnetic field index. Therefore, the azimuthal component of the

vector potential is expressed as

rA 0 (r) - RoA 0 (R0 ) + B0 (%) f dr r 1 L ) " (17)

*'8
. ° 

8
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?Making use of the Hamiltonian H - cmc2 . (m2c 4 + c p2) , the canonical

angular momentum P8 a r [Pa - (e/c)%(r)I and Eq. (17), we obtain the

electron trajectories
13

P r'- R0 = wc6Pl mr 2N + Arn(wrl +)

z = z + p z/im , (18)

!cl
W c JPe R

where

2

= - - (19)W 2!
Wr2 n)wc2 (20)

is the radial betatron frequency-squared of electrons, y8 
- (1 - %2)-

is the relativistic mass ratio associated with the aximuthal electron

velocity a8 c, Ar is the amplitude for radial betatron oscillations,
P - P0
Pe = 0 and T t' - t. Within the context of Eq. (7), it is

valid to approximate

. 6Pe

e= c - 2 (21)
YmR%

and to neglect the small oscillatory term cp'/R 0.

After a simple algebraic manipulation that makes use of Eq. (7),

the perturbed distribution function in Eq. (4) is approximated by
12'13

P 9
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SkV V a

fb { I(,- z) ROE e(R) + W 2.(R 0) fbo

+:e. . (22)

[+ (I v (R0 ) -

where the orbit integral I is defined by

T m d exp (i [z£' -9) + k(z' -Z) WT

(23)

kp iSpe -1
- + -

and use has been made of Eq. (8). Substituting Eq. (23) into Eq. (22)

and carrying out a tedious but straightforward algebra, we obtain the

perturbed distribution function

2 2 2
ec I +( 2

b = im 2 (w _ k, _ kVa) o(% ) + Izitz(%)  (24)

Subsequently, integrals of the perturbed current density in the left-hand

side of Eq. (14) are given by

•f R
fRidr . (r) - ( / B) dr J, (r)

R R

.r - (RO) + 1z ,) (25)

where the effective susceptibility a is defined by

10
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2 2 k2R2
ck)2 - L kR (26)
R 2 (W - L ~c - kSz + ikl zcIA/YZ3)2

and v - Ne2/mc2 is Budker's parameter.

Substituting Eq. (25) into Eq. (14), we obtain the matrix equation

relating ile(R.) and ilz(%). The condition for a nontrivial solution

to this matrix equation is that the determinent of the matrix vanishes.

This gives the general dispersion relation

F tw2  (kc-
2 b  + b+ d -d+] + 1 0 (27)

p2c2 +d+

where use has been made of the approximation w 1 wc + k8z c, which is

consistent with Eq. (7). Defining the geometric factor r(w,k)

rp2c2 2 Wc2 (kc- $..)2 1
r(wk" 2  [d + z (28)

and substituting Eq. (26) into Eq. (27), the dispersion relation in

Eq. (27) is expressed as

v c2 X2 - k2RO2
-Jr-- (29)

r(w,k) - - 2 ( 1W k c  (z)cA/z3)2(w - ~w- k ,c + ilktI ch/

which can be used to determine the complex eigenfrequency Q w - Lwc - c
c z

in terms of various physical parameters.

B. Geometric Factor r(wk)

The evaluation of the wave admittances at the boundaries of the

E-layer is required in order to complete the dispersion relation. To

11
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make the theoretical analysis tractable, in the subsequent analysis, we

concentrate the lowest modes of the electromagnetic waves inside the

14,1resonator where R < r < R • Moreover, the previous study 1 ,15 have".-:a c

exhibited that the lowest modes in the resonator dominates the wave

interaction. In this regard, for the transverse magnetic (TM) mode, we

select (Appendix)

z() 0, Ra 4 r R Rc (30)

which is lowest mode properly satisfying all the necessary boundary

conditions. The Maxwell equations of the TM mode in the region

0 r 4 R can be expressed as

at a

Sp E (r)-0 (31)
~rrr ~2 )

2 2 2 2except the inside of the E-layer (i.e., R < r < R). Here p w /c - k

is defined in Eq. (6). The physically acceptable solutions to Eq. (31)

is given by

A J Jr(pr) 0 R

B 1z (r) - B[JI(pr) - Ji(n)NI(pr)/N1(n)] (32)

R2  r<R a

* where JI(x) and N (x) are Bessel functions of the first and second kind,

respectively, the parameter n is defined by

2 ( c k 2)R 2 (33)

12
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and A and B are constants. Substituting Eq. (32) into Eq. (11) and

carrying out a straightforward algebra with a << %, we obtain a sum

of the electric wave admittance

i 2J (n)/irt

d + d+ - ( ( T - (34)

*where t - R/a

Similarly, for the transverse electric (TE) mode, the sume of the

magnetic wave admittances is expressed as (Appendix)

b + b+ - (35)
" b-b -

, ()+ G(w,k)Nt (M

where

-. I (n)D(w,k)
. .~ G(w,k) -- ,(36)

I-i N (n)F(wk)

- n (n) /in \2
D(w,k) j n, W ( nn

"n

,J 10 (n)Nl( ) - J1 (C)N0 (n)

Not J1 ( )N(n0) - Jl(n)N 1

is the vaccuum dispersion function,

F(wk) D(wk) - ["-n N'() 1 -( --n ) (38)

I I

the integer n in Eq. (37) is defined by

n s + mN (39)

13
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N is the number of the resonators, a is the half angle of the open

spaces as shown in Fig. 1, a is an integer satisfying 0 < s 4 N - 1,

the prime(') denotes (d/dx)J (x), and finally the parameter is defined

by

2 2 2 2 2  (40)
R C R /R 22W/ _k) c(0

Pbr detailed informatiou in deriving Eq. (35), we urge the reader to

read the Appendix. Substituting Eqs. (34) and (35) into Eq. (28)

completes the dispersion relation of the cusptron microwave tube.

4

14
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III. VACUUM DISPERSION RELATION

In the absence of the beam IV + 0 in Eq. (29)], the dispersion

relation in Eq. (27) reduces to the TM dispersion relation

J t(r) 0O (41)

and to the TE dispersion relation

G I (w,k) - 0 , (42)

where use has been made of Eqs. (28), (34) and (35). The TM dispersion

relation is equivalently expressed as

2
W - 2 in (43)

- a

a

where 8in is the nth root of J1($2n) - 0. Similarly, it is shown from

Eq. (36) that the TE dispersion relation can be equivalently expressed

as the ordinary TE mode

- k --in (44)

c R 2

a

and the magnetron TE mode

D(w,k) n (sin na)
=- 3 '(n) \ I

n

J0 (n)N1 () - J1 ()No()

N- I"j.(;)N 1 (n) - jI(iiN 1W 0 (45)

1.5
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where an is the nth root of JI (an) - 0. In Eq. (45), N is the

-€ number of resonators, a is the half angle of the open space in resonator,

the integer n in Eq. (45) is defined by n - s + iN, s - 0, 1, 2, ... N - 1,

and the parameter n and C are defined by n2 2 Ra2/R c2 22 p2Ra2

(W2/c - k2)Ra2 in Eq. (33).

In the remainder of this section, we investigate properties of the

magnetron TE mode in Eq. (45) which relates the parameter n to the

parameter C. In other words, the value of the parameter n is evaluated

in term of Rc/Ra - c/n. Once we determine value of the parameter n, the

dispersion curve in (wk) parameter space is obtained from the relation

W2/C2 _ k2 2/R 2 (46)
/ck i /a

Shown in Fig. 2 are plots of the parameters n (solid curves) and C

(dabhed curves) versus the radius ratio Rc/Ra for N - 6, s - 0, a - w/12

and the three lowest radial modes. Several points are noteworthy in

Fig. 2. First, as expected, value of the parameter n decreases

monotonically as the ratio Rc/Ra increases. However, value of the

parameter C stays relatively steady. Second, we note that values of

parameters n and c at Rc/R a - 1 are given by n - C 01  - 3.83 for the

lowest radial mode (the fundamental 2w mode), a02 - 7.02 for the second

and a61 - 7.50 for the third mode. Finally, it is shown for the third

radial mode that the value of the parameter T has a plateau for

1.2 <R /R 1.4.

Figure 3 is plots of the parameter n versus ratio R /R for s - 0,
c a

a - w/2N, the lowest radial mode number, and several values of N.i4
Remarkably, the value of the parameter n is relatively independent of
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the number N for N ;0 3 and for the lowest radial mode number. On the

A, other hand, for N - 2 and Rc/R a - 1, the parameter n is given

n a " 21 - 3.05. Dependence of the parameter n on the integer s is

presented in Fig. 4 where parameter n is plotted versus the ratio

R /R. for N - 6, a - w/12, lowest radial mode number and different
ca

values of s. After a careful examination of Eq. (45), we note that the

dispersion relation for s - 1 is identical to that for s - N - 1, and

so on. In this regard, plots in Fig. 4 are presented only for the

integer s satisfying 0 4 s 4 N/2. Obviously from Fig. 4, we conclude

that the parameter n depends sensitively on the integer s. For R a  1,

the value of the parameter n is given by in - asl for each s. Of course,

the vacuum dispersion relation in Eq. (45) is also investigated for

different values of the half angle a. Shown in Fig. 5 are plots of

the parameter n versus the ratio Rc/R a for N - 8, s 0 0, lowest radial

mode number and several values of a. Parameter n reduces with increasing

value of the half angle a for the range 1 < R c/Ra < 1.4, which is a typical

parameter range of present experiments.

17
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IV. NEGATIVE-MASS INSTABILITY IN MAGNETRON-TYPE CONDUCTOR

In this section, we investigate stability properties of the

negative-mass instability in a E-layer propagating through a magnetron-

type conductor, by making use of the dispersion relation in Eq. (29).

The growth rate and bandwidth of the negative-mass instability are

directly related to the gain and bandwidth of the cusptron amplifier

or oscillator. Making use of the fact that the "Doppler-shifted"

eigenfrequency 9 in Eq. (7) is well removed from the electron cyclotron

resonance, i.e., IlI < < Wc, and evaluating the function r(w,k) at

k - (w - lwc)/Bzc for the amplifier and at w - - 1w + kB c for

the oscillator, the dispersion relation in Eq. (29) can be approximated

:I by

(wk c g-kr) ki 2z3

(47)

. 2"Z2k 2. 2 - 2

2 YR 0 2 bED

for the amplifier and

[:.r(%,k) +(~r r + i Ik8c3

*O (48)2

2'R02 (t2U- k20)I %

18
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for the oscillator. In the remainder of this section, the growth rate

S- InMS and the Doppler-shifted real oscillation frequency ar - ReQ are
r

numerically calculated from Eq. (47) for the amplifier and from Eq. (48)

for the oscillator. Numerical calculation is carried out for the

nonrelativistic electron beam parameters v - 0.002, A - 0.04, O8 - 0.4

and 8z " 0.2 corresponding to j - 1.118. For a relativistic beam,

8e " 0.96 and 8z " 0.2 corresponding to y - 5.1.

To the lowest order, the eigenfrequency w and axial wavenumber k

are obtained from the simultaneous solution of the vacuum waveguide mode

dispersion relation,

2 2
k 2 (49)

c 2R2
a

and the condition for cyclotron resonance

w= k + k5 c. (50)

Moreover, to maximize the growth rate and efficiency of microwave

generation and amplification, it is required that the group velocity of

the vacuum waveguide mode in Eq. (49) be approximately equal to the

beam velocity, i.e.,

2
V - dw/dk - kc2/W 8 c . (51)g 2

Solving Eqs. (50) and (51) for the characteristic frequency and axial

wavenumber (w,k) - 'w0,k0), we find (Fig. 6)

W Z YZ2  k0 - Z czYz 2 /C . (52)

19



NSWC TR 82-530

For maximum growth, it is also required that (w0 k0) solve Eq. (49) in

• .leading order. Therefore, for maximum efficiency, we find that R should
* a

satisfy

R - nc/w cy . (53)
a cz

Under the grazing condition in Eq. (53), the cyclotron resonance mode

in Eq. (50) is a tangetial line of the vacuum waveguide mode in Eq. (49),

as shown in Fig. 6. Noting 8  % Wc/C, it is found from Eq. (53) that

the beam radius is determined from

R0/Ra ffi c/Rawc = eyz/n , (54)

and that the parameter n should satisfy the inequality

- nlty > o(55)

for a physically acceptable cusptron microwave tube.

A. Nonrelativistic Cusptron Amplifier

In this section, we summarize results of numerical calculation

from Eq. (47) for the amplifier in a nonrelativistic electron beam
6

09 . 0.4) propagating through a unifrom applied magnetic field with

the field index n 0 0. Shown in Fig. 7 is a plot of the geometric

factor r(w,k b) versus normalized frequency w/wc in Eq. (28) for N =.6,
gc

Z - 6, s - 0, a - n/12, R c/Ra = 1.4 and Ra w c 0.4433 corresponding

to the grazing condition in Eq. (53) for the parameter n = 2.715 in

Fig. 2. Here the axial wavenumber k is substituted by kb ( - Zc)/5 c

consistent with the dispersion relation in Eq. (47) for amplifiers. As
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expected from the condition Ra w c - 0.4433, the curve of the geometric

tactor r grazes the horizontal line. Values of the geometric factor r

are very close to zero in a considerable range (i.e., 6 <w/w < 6.5 in

Fig. 7) of w space, thereby exhibiting possibility of broad unstable

frequency range.

Figure 8 shows plots of (a) normalized growth rate Oi/wc and

(b) Doppler-shifted real frequency Qr/W c versus w/w obtained from

Eq. (47) for the electron beam parameters v - 0.002, A - 0.04,

ae M 0.4, Oz - 0.2, the field index n - 0 and the grazing conditions

(i.e., R w /c - 0.4433 for R /R 1.4, 0.4934 for R /R - 1.3,

0.5453 for R /R = 1.2, 0.5905 for R /R - 1.1 and 0.6257 for R /R 1),

corresponding to fundamental 21T mode, and parameters otherwise identical

to Fig. 7. For each value of R c/R a, the growth rate curve consists of

two parts; solid line corresponding to relatively large Doppler-shifted

real frequency and dashed line corresponding to very small Doppler-shifted

real frequency [Figs. 8(a) and (b)]. The efficiency of microwave tube is

directly proportional to the Doppler-shifted real frequency.
16 In this

regard, even though instability of the dashed curve exhibits large growth

rate, there is no sifnificant amplification in this frequency range

4i corresponding to small Doppler-shifted real frequency. Obviously from

Fig. 8(a), the amplification growth rate [solid curve in Fig. 8(a)]

reduces as R c/Ra approaches to unity. In particular, for R c/Ra f 1,

the amplification growth rate vanishes, thereby smoothly connecting

two dashed curves in Fig. 8(a). In this case (R c/Ra = i), the

Doppler-shifted real frequency Qr/w c is less than 0.003. We also

'I
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note from Figure 8(a) that the maximum growth rate of the cusptron is more

[aathan five times that for conventional gyrotron amplifier [Curve for Rcl/R a

1.4 in Figure 8(a)]. Also the Doppler-shifted real frequency for R /R -c a

1.4 in Figure 8(b) exhibits a strong possibility of very high efficiency in

microwaye amplification.

Numerical investigation of Equation (47) has been also carried out for

a broad range of physical parameters s, 1, a, N and various radial mode

number. From this numerical calculation, we maki several conclusions.

First, under the grazing condition Ra = nc/Nw yz corresponding to =,

there is no amplification growth rate of instability for perturbations with

+ N azimuthal harmonic number. Second, optimizing value of the parameter

SRaw /c according to Equation (53), the £ + N perturbations also have substantial

amount of the amplification growth rate with relatively large Doppler-shifited

real frequency. However, comparing with Figure 8, we conclude that the

amplification growth rate of the I = N perturbation is largest and is most

effective means of the microwave amplification. Third, after optimizing the

parameter Rawc/c according to Equation (53), the s = 0 perturbation is the

best in the microwave amplification. Fourth, it is found that the lowest

radial mode perturbation is dominant unstable mode. Fifth, we also found

from the numerical calculation that after optimizing R aw c, the growth rate and

Doppler-shifted real frequency are almost independent of a in the range

i/4N < a < v/2N for s - 0, £ = N and the lowest radial mode number. However,

increasing a from n/2N to 7/N reduces drastically the growth rate and Doppler-

shifted real frequency. Finally, stability properties have been investigated

I
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also for N = 4 and parameters otherwise identical to Figure 8. It has been

shown from numerical calculation that the maximum growth rate and Doppler-

shifted real frequency of N = 4 are comparable to those of N - 6 case. However, the

optimum value of the growth rate and real frequency occurs at Rc/Ra - 1.8

and R aw c/c - 0.4494. After consideration of all of these properties, we

conclude for the nonrelativistic electron beam with - 0.4 that the optimum

physical parameters for microwave amplification are N - 6, £ - 6, s - 0,

- g/12, R c/R -1.4 and R w /c - 0.4433.

B. Effect of Non-Zero Field Index

As shown in Equations (47) and (48), the coupling coefficient is directly

proportional to the parameter

1 1 2. + n (56)
1-n - 2 1 - n

where n is the field index defined in Equation (16). Evidently from Equation

(56), for nonrelativistic beam with 682 << 1, small increase of the field

index from zero makes a big difference in the coupling coefficient, thereby

enhancing the gain and efficiency of the microwave amplification. Shown in

Figure 9 is plots of (a) normalized growth rate 1w c and (b) Doppler-shifted

real oscillation frequency 2/wc obtained from Equation (47) for R c/Ra = 1.4,

R aw c/c - 0.4433, several different values of the field index n, and parameters

otherwise indentical to Figure 8. Obviously, the growth rate and real

frequency increase substantially by increasing the field index from zero to

a small positive value. However, since the applied magnetic field is not

anymore uniform along the axial direction for non-zero field index,
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tapering of the conducting wall radius Ra is required in order to match

the grazing condition in Equation (53) (e.g., Rawc/c - 0.4433 in Figure 9).

C. Nonrelativistic Cusptron Oscillator

The growth rate and Doppler-shifted real oscillation frequency are

numerically obtained from Equation (48) for the oscillations in a nonrelativistic

electron beam. Figure 10 is plots of (a) normalized growth rate and (b)

Doppler-shifted real frequency versus normalized axial wavenumber kc/w obtained
C

from Equation (48) for the parameters identical to Figure 8. Normalized

lowest order eigenfrequency wo/wc = t + k8z/c/w is also shown in the horizon-

tal scale in Figure 10. Comparing Figure 10(a) with Figure 8(a), we note

that unstable range in frequency space for the oscillation is broader than

that for the amplifier. Perfurbations in the amplifier are unstable only

for the positive k-space. Moreover, the real frequency in the oscillator

is considerably different from that in the amplifier [Figures 8(b) and 10(b)].

D. Relativistic Cusptron Amplifier

Preliminary investigation of Equation (47) has been carried out for the

amplifiers in a relativistic electron beam with 80 - 0.96 and 8z - 0.2.

After a careful examination of Equation (55) and Figure 2, we note for the

relativistic electron beam (0, - 1) that the first available coupling occurs

at the third lowest radial mode number where the parameter n is larger than

0 N for a reasonable range of R c/R . Figure 11 shows plots of (a) normalized

growth rate i 1w and (b) Doppler-shifted real frequency 0r /w versus /Wic rc c

for 8 - 0.96, the grazing conditions (R wc - 1.1101 for R/ aR m 1.5,a cc a

6 1.1679 for R c/R - 1.25 and 1.2249 for R c/Ra m 1), and parameters otherwise
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identical to Figure 8. Contrary to a nonrelativistic cusptron amplifiers

(in Figure 8), the growth rate and bandwidth of instability in Figure 11
,: incrase drastically as Rc /Ra approaches to unity. However, for Rc/R a m 1.5

and % C /c - 1.1101, the Doppler-shifted real frequency of perturbations with

+ . N azimuthal mode number vanishes, while the f - N perturbation has

* considerably large Doppler-shifted real frequency. In this regard, by

selecting Rc/Ra - 1.5 a, Ra c /c - 1.1101, microwaves with I - N mode

perturbations are dominantly amplified, thereby optimizing the microwave

power output for radiation with frequency w = w . On the other hand, for
C

_ RR " 1, various other modes compete with the £ - N mode, leading to multi-

mode amplification. Therefore, even though the growth rate for Rc /Ra - 1.5

. is less than that for R /R - 1, geometric configuration with R /R - 1.5 isc a c a

more effective to amplify microwaves. Numerical investigation of Equation

(47) for N - 12 and N - 24 also exhibits very similar properties.

After a careful examination of the geometric factor r(w, k) for a broad

range of various physical parameters, it can be found

r(w, kb) 0,
b (57)

,- k)/9k] k - kb = 0,

for particular values of R w /c and frequency w. In this case, in order toa c

correctly evaluate the gain of the cusptron, we approximate Equation (29) by

r Ia1 (2, z kb  21z2C2 (k )k1 r(., - --28 2 2 2~

3 -2

a kJc (.2u - ~2R 2 ). (58)
2R02

z 0
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Of course, the dispersion relation in Equation (47) is used to obtain the

gain for a broad range of physical parameters except w satisfying Equation

(57). Obviously, Equation (47) fails to estimate the gain for this

frequency range. We therefore make use of Equation (58) to obtain the gain

at the frequency satisfying Equation (57). We also emphasize the reader

that the gain of the cusptron amplifier at the frequency w corresponding

to Equation (57) is significantly greater than that at other frequencies.

In order to illustrate a high gain cusptron amplification, shown in

Figure 12 are plot of the normalized growth rate S1 1w versus w/w obtained
i c c

from Equations (47) and (58) for -0 = 0.96, N - 24, ti 25, Rc/Ra - 1.1,

R aw c/c = 1.069 and parameters otherwise identical to Figure 8. The dashed

curves in Figure 12 are plot of the gain obtained from Equation (47) in the

frequency range satisfying Equation (57). Obviously Equation (47) fails in

this frequency range. However, Equation (58) correctly evaluates the growth

rate in this region. As expected, the maximum gain in Figure 12 is considerably

enhanced in comparison with that of ordinary cusptron amplifier (Figures 8

and 11). However, the Doppler-shifted real frequency in this frequency range

is comparable or smaller than that for other frequency ranges. Other detailed

properties of the relativistic cusptron amplifiers and oscillators are currently

under investigation by authors for a broad range of physical parameters and

will be published elsewhere.
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V. CONCLUSIONS

In this paper, we have investigated the negative-mass stability

properties of an E-layer propagating through a magnetron-type conductor,

in connection with application on the cusptron amplifier and oscillator.

Stability analysis has been carried out within the framework of the

linearized Vlasov-Maxwell equations, assuming that the E-layer is thin

and in a fast rotational equilibrium. The formal dispersion relation

of the negative-mass instability was obtained in Section V, including the

important influence of the magnetron-type conductcr which has periodic

resonators. Properties of the vacuum waveguide mode in a magnetron-type

conductor have been briefly investigated in Section III, without including

the influence of beam electrons. Making use of the vacuum dispersion

relation, the cut-off frequency w = nc/R has been calculated in terms
ct a

of the radius ratio Rc/Ra. For the number N of the resonator more than three,

it has been shown for the fundamental 2w mode with s - 0 that wR a/c aO 0

3.83 when R /R - 1. In Section IV, the negative-mass stability properties
c a

of an E-layer were numerically investigated, including the important

influence of the magnetron-type conductor. Several points are noteworthy

from this numerical calculation for a nonrelativistic cusptron amplifier

or oscillator. First, optimum coupling occurs between the beam and the

fundamental 2r modes. Utilizing the fundamental 2w mode, it was shown

that for typical present experimental beam parameters, gain and efficiency

of the cusptron can be more than five times those of the gyrotron. Second,

for the applied magnetic field satisfying the grazing condition Ra /c

n/NY of the Z = N perturbations, other azimuthal perturbations with Z # N

z

27
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are suppressed. Therefore, under this grazing condition, the I = N mode

perturbation is the dominant unstable mode, optimizing the microwave

power output for radiation with frequency w = Lw c  In this regard, even

for relatively small applied field, high frequency microwaves can be

amplified by making use of the cusptron with N > 2. Finally, the growth

rate and Doppler-shifted real oscillation frequency are substaatially

increased by changing the applied field index from zero to a small positive

n value. Preliminary investigation of a relativistic cusptron amplifier has

been carried out, and it has been shown that the stability trend of the

relativistic cusptron is similar to the nonrelativistic case.

28
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MAGNETRON-TYPE CONDUCTOR

RESONATOR
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0c
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FIGURE 1. CROSS SECTIONAL VIEW OF CUSPTRON

30



NSWC TR 82-530

II N=6
8' s-=0

77 a lr/1 2

01I
1 2 345 6

Rc/Ra

FIGURE 2. PLOTS OF THE PARAMETERS 77 (SOLID CURVES) AND (DASHED CURVES) VERSUS
RATIO RcIRa [OBTAINED FROM EQ. (45)] FOR N 6, s =0, a 7r/12 AND THREE LOWEST
RADIAL MODES
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4- s =0
a r/2N

N=8
77 N=6

2 N=4

N=2

13 5

FIGURE 3. PLOTS OF PARAMETER 77 VERSUS RATF) R C/R a OBTAIINED FROM EQ. (45) FOR s=0,
airf2N, LOWEST RADIAL MODE NUMBER, AND SEVERAL VALUES OF N
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4 N=6
a=7r/12

s=2

b77

2

s= 3 =O

0
1 3 5

L'L"L.:RC/R

a

FIGURE 4. PLOTS OF PARAMETER r VERSUS RATIO RcIRa OBTAINED FROM EQ. (45) FOR N-6,
a - /12, LOWEST RADIAL MODE NUMBER AND DIFFERENT VALUES OF s
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4 7r/32 N=8
7r/l16 s=0

3 7r/32
7r/8

12

0
1 35

Rc/Ra

FIGURE 5. PLOTS OF PARAMETER 17VERSUS RATIO R /R1 OBTAINED FROM EQ. (45) FOR N =8,

s 0, LOWEST RADIAL MODE NUMBER AND SEVERAL VALUES OF c
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W 2/C2 k2 = 72/R2
a

k

,.

FIGURE 6. THE STRAIGHT LINES w k1zc + 2w AND wA~ kc/O3z INTERSECT AT (wk) =

(Qw-t Qw2C2 2 172R 2 2 /

Z, O ' 0.THE VACUUM WAVEGUIDE MODE W~ (k2  /Ra
PASSES THROUGH (wo, k) PROVIDED RawcIC
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N=6 Rc/Ra =1.4
"':" s =040...R c/c= 0.4433

a c
20 a=ir/12

6.4
-1 0 6.2 6.6

-20

-40

-60

FIGURE 7. PLOT OF THE GEOMETRIC FACTOR F(w,kb) VERSUS NORMALIZED FREQUENCY
O w/c IN EO. (28) FOR N - 6, Q = 6, s - 0, a - ir/12, Rc/Ra - 1.4 AND Raw = 0.4433

CORRESPONDING TO THE GRAZING CONDITION FOR ,' " 3.2

3
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*1"

(a) v=0.002 A =0.04,

::: 'iR 8 /Ra 1.4

0-

x ~ ~1.3I/

li \ 11.2 1 I

6.0 6.2 6.4 6.6

FIGURE 8. PLOTS OF (a) NORMALIZED GROWTH RATE ni/wc AND DOPPLER-SHIFTED REAL
OSCILLATION FREQUENCY Sr/w VERSUS w/w OBTAINED FROM EQ. (47) FOR
ELECTRON BEAM PARAMETERS v = 0.002. L = 0.04, 00 = 0.4, Oz = 0.2, FIELD INDEX
n = 0 AND THE GRAZING CONDITIONS CORRESPONDING TO EQ. (53), AND
PARAMETERS OTHERWISE IDENTICAL TO FIGURE 7
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(b) V=0.002, A=0.04,
g°= 0 "4 '  f3z =0.2,

12-

x -

3.

oc 6

0
6.0 6.2 6.4 6.6

FIGURE 8. (CONTINUED)
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(a) Rc/Ra= 1.4, V =0.002,
Rawc/C=0.4433, A=0.04,

n=0.2 e 0.4 , /3z =0.2
16

n n= 0. 1

0 n-O-
i:8

6.0 6.2 6.4 6.6
wcC

FIGURE 9. PLOTS OF (a) NORMALIZED GROWTH RATE 1i/wc AND (b) DOPPLER-SHIFTED REAL

OSCILLATION FREQUENCY 2r/wc VERSUS w/w/c OBTAINED FROM EQ. (47) FOR

Rc/Ra = 1.4, Ra w/C = 0.4433, SEVERAL DIFFERENT VALUES OF THE FIELD INDEX

n, AND PARAMETERS OTHERWISE IDENTICAL TO FIGURE 8
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24- (b) Rc/Ra =1.4, P=0.002,
Ra w /c=O.4433, A=0.041

0.~ 4,'~ I = 0.2
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(a) =0.002,, A=0.04,
0 =0.4, fPZ=0.2, n=O

00I!8-

x

c4 0

0 c/i a

-0.5 0 1.25 2.5
kc/ c

5.9 6.0 6.25 6.5
Wb/cOc

FIGURE 10. PLOTS OF (a) NORMALIZED GROWTH RATE fi/wc AND (b) DOPPLER-SHIFTED

REAL FREQUENCY Qr/wc VERSUS NORMALIZED AXIAL WAVE NUMBER kc/w c

OBTAINED FROM EQ. (48) FOR THE PARAMETERS IDENTICAL TO FIGURE 8
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6

4 f 0 0 0 4 , 0,=0.2, n=o

0

-0.5 0 1.25 2.5
kc/cuw

59 6.0 6.25 6.5

b0c

FIGURE 10. (CONTINUED)
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(a) v=0.002, A=0.04,
10- go =0.96, 8z=0.2

* I

" a

5- Rc/Ra=1

Ii1.25

0 
1.5

6 6.4 6.8

FIGURE 11. PLOTS OF (a) NORMALIZED GROWTH RATE 2i/c AND (b) DOPPLER-SHIFTED REAL
FREQUENCY *r/wc VERSUS w/w c FOR go = 0.96, THE GRAZING CONDITIONS

CORRESPONDING TO EQ. (53). AND PARAMETERS OTHERWISE IDENTICAL
TO FIGURE 8
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* . 0 () V 0.002, A 0.04,
0 =0.96, #3 =0.2

* . 0

: . x

5 3 5a-

1.25
_ 1.5

06

6 6.4 6.8
- /Icwoc

FIGURE 11. (CONTINUED)
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" N=24, 1=25,
s =O, Rc/Ra = 1.1,

3 RaCwc/C = 1.069 '
/ \ v 0.002,

o A=0.04,
0 0=0.96~20-

025

25 26 27

S.4

FIGURE 12. PLOT OF THE NORMALIZED GROWTH RATE Qi/w c VERSUS wl/c OBTAINED FROM

EQS. (47) AND (58) FOR 0 = 0.96, N - 24, Q - 25, Rc/Ra . 1.1, Rawc/c = 1.069, a = /2 ,

AND PARAMETERS OTHERWISE IDENTICAL TO FIGURE 8
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APPENDIX A

Magnetic Wave Admittances

In this section, we obtain expressions for the wave admittances at

the boundaries of an E-layer in a magnetron-type conductor. Shown in

Fig. A-I is one of the resonators in a magnetron-type conductor. Obviously,

the electromagnetic field in the resonator is required to satisfy the

boundary conditions

r (r R) z(r R) = 0(r R)= 0,

(A.l)

B(e= ±a) E (e ±a) = (e ±M) -0e z r

The previous study1 5'16 has shown that the lowest azimuthal mode in the

resonator dominates the wave and beam interaction. Moveover, the

theoretical analysis is considerably simplified when the electromagnetic

field in the resonator is represented by the lowest azimuthal mode.

Therefore, after a careful examination of the boundary conditions in

Eq. (A.1), it is shown that the electric and magnetic fields in the
.4

resonator are expressed as

B b [Jo(pr) - Jl(C)N0 (pr)/Nl(4)] exp {ikz} , (A.2)

E= ib(W/cp)[Jl(pr) - JI( )NI(pr)/NI( )] exp {ikz} , (A.3)

B = - (kc/w)E, (A.4)

A-I
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for the TE mode and

E B -E 0 (A.5)
r e z

for the TM mode. In Eq. (A.2), J (x) and N (x) are Bessel functions of2. 2.
the first and second kind, respectively, C - (W2 /C 2 - k2 R and b is

a constant. It is also emphasized that Eq. (A.5) is valid provided

W2/c2 _ k2 # 0. Making use of Eq. (A.5), the electric wave admittances

have been obtained in Eq. (34).

In the interaction region 0 4 r < Ra, the perturbed axial mangetic

field is expressed as

Sbin Jn(pr) exp { i(n8 + kz) }

on

- .- O <r <R 0B 4 r 
(A.6)

z

pbn Zn(pr) exp {i(ne + kz)}
n nZ

R <r R
0 a

where the function Zn (pr) is defined by

Jn(Pr) ,n

Z (pr) - (A.7)
n

J2Z(pr) + G2IN2I(pr) , n .

and constant GZ is determined from the proper boundary condition. From

Eq. (A.3), we obtain the azimuthal electric field

A-2
0e
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-E(Ra + )  -i(w/cp) [Jl10) - J1 (r)Nl(n)/Nl( )1 exp { ikz } , (A.8)

for

Lr a < < 2-- + .+
N N

and Ee(R ) = 0, otherwise, where N is the number of the resonators,

q0, 1, .. N -1, and *( )denotes 60 * (R.j + 6). It is also shown
b +

from Eq. (A.6) that

e(Ra-) - -i(w/cp) 1 b Z (n) exp {i(ne + kz)} (A.9)a n n
n

where the prime (') denotes (d/dx)Z n(x).

The constants bn are determined by the average field matching
15 16

f dE(Ra) exp {-in}
': f o

N-1 ((2nq/N)+ a

-E C R a+) d I d expf-mnej (A.10)
q a 0 fJ(2irqf/N) -a

which gives

• 1

for n - s + inN, and b - 0 otherwise, where m is any integer and s = 0,n

1, ... N - 1. Substituting Eq. (A.l1)into Eq. (A.6), the axial magnetic

field in R0 < r < R is expressed as0i a

A-3
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Nc [F- J ( ") - 1l(

Br -b-I-i-- Nl(n) 1L.P (A.12)

CO Z(pr) (snn
m-x Z n / exp {i(ne + kz)}MEi -- z W(n) n I

Resonance is determined by the requirement that the average value of

the axial magnetic field in the interaction region match that in the

resonator, i.e.,

(2wq/N) + a

deB z(R ) - 2B z(R ) . (A.13)

(2irq/N) - a

Substituting Eqs. (A.2) and (A.12) into Eq. (A.13), and carrying out a

tedious but straightforward algebra, we determine the constant G

J£ (n)D(w,k)

G (D,k) - (A.14)
'..N£ ()F(,k)

where the vacuum dispersion function D(w,k) is defined by

' n(n) in na) 2

D(wk)m = -J (n )

(A. 15)

" J(n)NI() - Jl(C)N0W
: Na JI1()NIl() - Jl (n)N l()

and the function F(w,k) is given by

A

bI,- A-4

.I
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F(w,k) aD(w,k) -___ ic J(A.16)
(ni) N2 W>

The perturbed axial magnetic field with azimuthal harmonic number

2 is given by

{.~r bl 2 J 2I(pr) , 0 4 r < RO ,

]r b, [i. (pr) + G2IN 2I(pr)] , < r -4 R (

from Eq. (A.6). Making use of Eq. (A.17) and the definitions of the

magnetic wave admittances in Eq. (12), it can be shown that sum of the

magnetic wave admittances at r - R0 is expressed as

2b_ +. = I) (A.18)
I I

b +b+ J- ()+GN {

where R0/R c =nRR = (w2/c2 - k2) R0.

A-5
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I2.a

FIGURE A-1. CONFIGURATION OF A RESONATOR
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